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INTRODUCTION 

Data analysis in ultrasonic interrogation often requires quantitative 

methods that provide solution in analytic form. The scattering theory re- 

cently developed within the scheme of an extended version of the equivalent 

inclusion method [1,2] gives such a solution form. Of particular interest 

is that this solution reduces to that of the static solution of the Eshelby 

problem [3]. This suggests that many of the research techniques developed 

in the static theories of composite materials and constitutive equations 

can be extended to include the frequency spectra of the ultrasonic waves 

such that the signals received at the probe(s) can be interpreted in terms 

of the microstructural parameters. The far field solutions needed in data 

analysis of ultrasonic evaluation therefore are often complemented by the 

near field solutions obtained in fracture mechanics or theories of composites. 

The determination of the static effective properties of composites 

or poly-crystalline alloys is an area that constitutes extensive body of 

literature. Basically, there are two major theoretical approaches that can 

be used to describe the global material properties which include the causal 

effect introduced by the constituents, i.e. the statistical or deterministic 

approach. Both approaches depend upon the availability of the solution of a 

single inhomogeneity, be it a crack or an ellipsoidal inclusion material, 

and an averaging theorem. A critique of the approaches and a review can be 

found in [4] and [5], respectively. Recent textbooks on composites are also 

available for references, [6,7]. 

Solution to the scattering of a single embedded inhomogeneity is 

available by different methods that are appropriate at different frequency 

ranges [8]. The methods that offer a solution in an analytic form are: 



the Born approximation [9], the longwave approximation [lo-121, the Ed- 

tended method of equivalent inclusion [II, and the extended theory of 

geometric diffraction theory [13,14]. 

There are several averaging schemes or theorems that exist in the 

literature for finding the dynamic effective moduli and mass density. Kuster 

and Toksoz [15] considered a sphere of radius "a" consisting of small spheres 

of inclusion material in an elastic matrix. At Rayleigh limit and at low 

concentrations of inclusion material they showed that the scattered displace- 

ments are equivalent to those obtained by a homogeneous sphere with effective 

properties. Berryman [16,17] formulated a self-consistent dynamic theory of 

composites by requiring the scattered displacements to vanish on the average. 

His theory is appropriate for the longwavelength regime. Gaunaurd and 

Uberall [18] studied the resonant scattering from spherical cavities in 

elastic and viscoelastic media. 

Employing the concept of volume averaging for such physical quantities 

as stress, strain and displacements, the moduli and mass density of the ef- 

fective medium are derived by matching the strain energy and the kinetic 

energy of the effective and the physical media. The approach taken is 

similar to those of Christensen and Lo [19], Chou, Nomura and Taya [20 1 

and Kohn [21] except the schemes developed in References [19,201 apply 

to the static case, and that in Reference [21] applies to the Rayleigh limit. 

2 



THEORETICAL CONSIDERATIONS 

Consider the problem of a matrix material, with elastic moduli 

'jkrs and mass density p, that contains a concentration of second-phase 

particles of moduli Cilus and mass density P', randomly distributed over 

the material system. A schematic diagram of the system is as shown in 

Fig. 1. The true composite thus occupies the whole region and possesses 

effective properties C* 
Jk= 

and P*. To determine the effective moduli 

and mass density, the following definitions are used: 

<U> _ = c* <g> 

1 1 --<(J E> = - c* <g><E> 
2 .., - 2 

1 1 --<p v v> = - p*<v><v> 
2 - - 2 -.- 

where g, E and y are the stress, strain and velocity fields, and the 

notation < > denotes the volume average of a field quantity, e.g. 

<F> = (V) -l I, F(xi)dV 

in which V represents volume. The left-hand-side and the right-hand-side 

in each of the Equations (l-3) can be shown to be equivalent in a self- 

consistent manner [22,23]. 

Using the elastodynamic solution for a single ellipsoidal inhomo- 

geneity in a linear elastic medium developed in [l], the displacement 

and strain fields inside an inhomogeneity are found, for incident time- 

harmonic plane wave, to be: 

[LI(~)(~)]< = D(:)u(~) - . 

[I]< = A(~)E(~) -. - - 

(5) 

(6) 

(1) 

(2) 

(3) 

(4) 



in which the superscripts (m), (a) and < denote "mis-match," “applied,” 

and "inside the inhomogeneity," respectively. Employing the volume 

averaging process as described by Eq. (4) and substituting in Eqs. (l-3), 

the effective properties are easily defined as follows: 

p*=p+ f ApDD . . (7) 

I.* =c+f ACZA (8) 

where Ap = p'-p, AC = C'-C and f is volume fraction of inclusion material. 

The tensor fields J! and 4 are of ranks two and four, respectively, and 

they are functions of wavenumber, geometric properties, and effective 

and inclusion material properties: 

D = 
mj 

6 
mj - <fm;(~)>/CfmjIO] + 4lr(p'-p*)J) 

A =F 
mnpq < m;k n(c) + Fn;k,m(f)) sjkpq/2P*u2 + 6mp6nq , 

(9) 

(10) 

in which the f, and F tensors are defined in [l] and S. 
Jh'q 

is the connecting 

tensor between the eigenstrains and the applied strains, i.e. 

*Cl) = s 
Ejk 

(a> 
jkpq Epq 

(11) 

for the case of uniform eigenstrains and eigenforces. In developing these 

expressions the volume average of the ?-integrals, as defined in References 

[1,21, must be evaluated. Finally, it should be noted that p* and C* are 

physical quantities and hence only the real parts of D D and 4 should enter 

into consideration in Eqs. (7,8). 



SPHERICAL INCLUSION MATERIALS 

Let the spherical inclusion materials of radius "a" be randomly 

distributed Over the whole volume of the matrix. If the matrix and the 

inhomogeneities are isotropy, the effective medium is also isotropic. 

It is straight forward to show that 

D 
4 = 6mjil -(f33<(:)) /f,,[o] + 4n(p'-o*)w2}=bmjD 

and 

'jkpq = 'kjpq = 'jkqp = 'pqjk 

sill = s2222 = s3333 = c1 

'2323 = '1313 = 5212 = c3 

'1122 = '1133 = '2233 = '2 

where 

c1 = <c; + c; - 2GC;)/[(CT) 2 + Cf '2; - 2Kq121 

c2 = (CTG - 2 cp/r q> + CT C$ - 2q>21 

c3 = {2 F122 1 101 + iJ*/(i.J’-?J*>~ 
, 

c*l = G ~~~~ pl + (G+I>D~~~ 1[ol + H 
l , 

F = -(A* + 2p*)/G 

G- (A'-x*>/[(X'-x*> + 2(p'-p*)J 

H = X/G 

(12) 

(13) 

Following the theory developed in the previous section, the effective 

moduli and mass density are found to be 
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p” E p + f Ap D2 (14) 

A* = A + fbUAllll + 2A1122) + 2A~A1122] 

IJ* = IJ + f 4dA1212 + A1221) 

(15) 

(16) 

K* = K + f[(Allll + 2Al122>AX + (2/3)[3Al122 + A1212 + A1221)A~] (17) 

It is clearly seen that the velocities are dispersive. At frequency range 

above that of the Rayleigh limit, this phenomenon is pronounced. From 

Figs. 2-7, the bulk moduli, shear moduli and longitudinal velocities are 

shown as functions of volume concentration of spherical inclusion materials 

for the cases of (1) aluminum spheres in germanium and (2) voids in silicon 

nitride, HS 130. 

As an example of application to detect localized damage by void 

nucleation, let all voids be locally nucleated within a region Q of radius 

R, R>>a, Fig. 8. The effective mdouli of this composite can therefore be 

obtained as before. If void nucleation outside the region Q can be ignored, 

then the scattering of the composite sphere can be easily obtained. Using 

the program developed in [24], the scattering cross section for a composite 

sphere consisted of small voids in titanium is displayed as a function of 

dimensionless wavenumber for different concentration of voids, Fig. 9. 

The scattering cross section, which is essentially proportional to the 

attenuation [25], increases with increasing concentration f. It appears 

that these curves can be used to locate and calibrate porosity in a struc- 

tural component. Effective properties for this material system are pre- 

sented in [26]. 



CLOSING REMARKS 

The velocity and attenuation of ultrasonic waves in two-phase media 

are studied by using a self-consistent averaging scheme, that require 

the effective medium to possess the same potential and kinetic energy as 

the physical medium. The concept of volume averaging for physical quan- 

tities is employed and the solution depend upon the scattering of a single 

inhomogeneity. The theory is general in nature and can be applied to any 

two-phase material system. Since the scattering of an ellipsoidal inhomo- 

geneity is known, the average theorem presented in this report can be used 

to study the velocity and attenuation of distributed inhomogeneities of 

shapes such as disks, short fibres, etc. The introduction of the orienta- 

tion of these inhomogeneities besides only their sizes as in the spherical 

geometry will necessarily induce anisotropy in the effective medium. 

Results for randomly distributed spherical inclusions of radius "a" 

are presented. Effective moduli and mass density are found to be dis- 

persive. When the inhomogeneities or voids are nonuniformly distributed, 

attenuation occurs. The case of some localized damage is studied. Since 

it is well known that porosity is directly related to the strength of 

bone [27] and ceramics [28] it appears that the theoretical study of velocity 

and attenuation in two-phase media presents a valuable means for data analysis 

in ultrasonic evaluation of material properties. 
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Fig. 2 Effective bulk modulus vs. concentration: 
aluminum spheres in germanium. 
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Fig. 5 Effective bulk modulus vs. concentration: voids 
in silicon nitride 
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Fig. 7 Longitudinal wave velocity vs. concentration: 
voids in silicon nitride. 
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Fig. 8 A schematic diagram of localized damage. 
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